Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Bromo- N-phenylaniline

Emily J. Hefter and Joseph M. Tanski*

Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
Correspondence e-mail: jotanski@vassar.edu
Received 10 March 2011; accepted 21 March 2011
Key indicators: single-crystal X-ray study; $T=125 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.043 ; w R$ factor $=0.118$; data-to-parameter ratio $=24.1$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}$, the dihedral angle between the benzene rings is $52.5(1)^{\circ}$, whereas the pitch angles, or the angles between the mean plane of each aryl group 'propeller blade' and the plane defined by the aryl bridging $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle, are 19.6 (2) and $36.2(3)^{\circ}$. While the $\mathrm{N}-\mathrm{H}$ group is not involved in hydrogen-bonding interactions, the structure exhibits a network of intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{N}-$ $\mathrm{H} \cdots \pi$ interactions.

Related literature

The title compound is an amine analogue of brominated diphenyl ether flame retardant materials commonly used in household items. For information on environmental and health concerns related to brominated flame retardants, see: de Wit (2002); Lunder et al. (2010). For the synthesis, see: He et al. (2008); Sus (1947). For a related structure and information on $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions, see: Krzymiński et al. (2009). For a description of the pitch angle in similar diphenyl structures, see: Duong \& Tanski (2011); Lim \& Tanski (2007).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}$
$M_{r}=248.12$
Orthorhombic, Pccn
$a=15.6741$ (6) \AA

$$
\begin{aligned}
& b=17.7531(7) \AA \\
& c=7.3608(3) \AA \\
& V=2048.24(14) \AA^{3} \\
& Z=8
\end{aligned}
$$

Mo $K \alpha$ radiation

$\mu=3.97 \mathrm{~mm}^{-1}$

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker 2007)
$T_{\text {min }}=0.373, T_{\text {max }}=0.857$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.118$
$S=1.07$
3137 reflections
130 parameters
1 restraint
$T=125 \mathrm{~K}$
$0.31 \times 0.21 \times 0.04 \mathrm{~mm}$

31081 measured reflections
3137 independent reflections
2552 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=1.72 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.77 \mathrm{e}^{-3}$

Table 1
$\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{N}-\mathrm{H} \cdots \pi$ interactions $\left(\mathrm{A},{ }^{\circ}\right)$.
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots C g 2^{\mathrm{i}}$	0.95	2.69	$3.404(3)$	132
$\mathrm{~N} 1-\mathrm{H} 1 \cdots C g 1^{\mathrm{ii}}$	$0.85(2)$	2.65	$3.501(2)$	175
$\mathrm{C} 9-\mathrm{H} 9 \cdots 1^{\text {iii }}$	0.95	2.96	$3.651(3)$	131

Symmetry codes: (i) $x, y, z-1$; (ii) $x-\frac{1}{2}, y+\frac{3}{2},-z$; (iii) $-x+\frac{1}{2},-y+\frac{3}{2}, z+2$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and Mercury (Macrae et al., 2006).

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2415).

References

Bruker (2007). APEX2, SADABS and SAINT. BrukerAXS Inc., Madison, Wisconsin, USA.
Duong, M. M. \& Tanski, J. M. (2011). Acta Cryst. E67, o755.
He, C., Chen, C., Cheng, J., Liu, C., Liu, W., Li, Q. \& Lei, A. (2008). Angew. Chem. Int. Ed. 47, 6414-6417.
Krzymiński, K., Wera, M., Sikorski, A. \& Błażejowski, J. (2009). Acta Cryst. E65, o152.
Lim, C. F. \& Tanski, J. M. (2007). J. Chem. Crystallogr. 37, 587-595.
Lunder, S., Hovander, L., Athanassiadis, I. \& Bergman, A. (2010). Environ. Sci. Technol. 44, 5256-5262.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sus, O. (1947). Annalen der Chemie 557, 237-242.
Wit, C. A. de (2002). Chemosphere, 46, 583-624.

supplementary materials

Acta Cryst. (2011). E67, o976 [doi:10.1107/S160053681101052X]

4-Bromo- N-phenylaniline

E. J. Hefter and J. M. Tanski

Comment

Diphenylamines have uses in chemical synthesis and materials chemistry, and they have been investigated for their biological activity (Krzymiński et al., 2009). The title compound, a brominated diphenyl amine, was first synthesized by the photolysis of 4-diazodiphenylamine in the presence of HBr (Sus, 1947). More recently, halogenated diphenylamines have been prepared by copper catalyzed coupling reactions (He et al., 2008). The title compound is an amine analogue of a class of brominated diphenyl ether materials (de Wit, 2002). Polybrominated diphenyl ethers are commonly used as flame retardants in consumer products and electronics and have been found in humans (Lunder et al., 2010). The title compound is a monobrominated diphenyl amine derivative with a "propeller blade" disposition of the aryl rings about the bridging nitrogen atom. The aryl-bridging C4-N1-C7 angle is 126.4 (2) $)^{\circ}$, similar to the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle of 126.1 (2) ${ }^{\circ}$ found in the isomorphous structure of 4-methoxy- N-phenylaniline (Krzymiński et al., 2009). The dihedral angle is found to be $52.5(1)^{\circ}$, whereas the pitch angles are $19.6(2)^{\circ}$ and $36.2(3)^{\circ}$. The pitch angles are the angles between the mean plane of each aryl group "propeller blade" and the plane defined by the three atoms C4-N1-C7 (Lim \& Tanski, 2007; Duong \& Tanski, 2011). In 4-methoxy- N-phenylaniline, the dihedral angle is somewhat larger, $59.9(2)^{\circ}$ (Krzymiński et al., 2009), whereas the pitch angles, 7.2° and 53.8°, are very different, exemplifying how analogous structures with similar dihedral angles may have dramatically different dispostions of the aryl groups about the bridging atom.

The structure reveals that there is no intermolecular hydrogen bonding, however, a network of intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{N}-\mathrm{H} \cdots \pi$ bonds exists (Table 1), as in the isomorphous structure of 4-methoxy- N-phenylaniline (Krzymiński et al., 2009). These interactions are shorter in the title compound. The $\mathrm{N}-\mathrm{H} \cdots \pi$ centroid distance of $2.65 \AA$ (Fig. 2) is shorter than the $2.88 \AA$ distance observed in 4-methoxy- N-phenylaniline, and the $\mathrm{N}-\mathrm{H} \cdots \pi$ centroid angle of 175° is closer to linear than the 142° angle observed in 4-methoxy- N-phenylaniline, resulting in an interaction where the amine proton is directed at the center of the aromatic ring (Fig. 2), as opposed to at the edge of the ring as found the structure of 4-methoxy- N-phenylaniline.

Experimental

Crystalline 4-bromo- N-phenylaniline was purchased from Aldrich Chemical Company, USA.

Refinement

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and were refined using a riding model at $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 \times U_{\mathrm{eq}}(\mathrm{C})$ of the aryl C-atoms. The hydrogen atom on nitrogen was refined semifreely with the help of a distance restraint, $\mathrm{d}(\mathrm{N}-\mathrm{H})=0.85(2) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \times U_{\text {eq }}(\mathrm{N})$. There are three difference peaks $>1 \mathrm{e} / \AA^{3}$. The first and third highest difference peaks of 1.72 and $1.10 \mathrm{e} / \AA^{3}$ are $<0.8 \AA$ from Br 1 , and the second highest difference peak of $1.64 \mathrm{e} / \AA^{3}$ is very close to the calculated H 10 position. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

supplementary materials

Figures

Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 50% probability level.

Fig. 2. A view of the $\mathrm{N}-\mathrm{H} \cdots \pi$ intermolecular interaction with displacement ellipsoids shown at the 50% probability level [Symmetry codes: (i) $x-1 / 2, y+3 / 2,-z]$.

4-Bromo- N-phenylaniline

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}$
$M_{r}=248.12$
Orthorhombic, Pccn
Hall symbol: -P 2ab 2ac
$a=15.6741$ (6) \AA
$b=17.7531$ (7) \AA
$c=7.3608(3) \AA$
$V=2048.24(14) \AA^{3}$
$Z=8$
$F(000)=992$
$D_{\mathrm{x}}=1.609 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9926 reflections
$\theta=2.3-30.2^{\circ}$
$\mu=3.97 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
Plate, colourless
$0.31 \times 0.21 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker 2007)
$T_{\text {min }}=0.373, T_{\text {max }}=0.857$
31081 measured reflections
3137 independent reflections
2552 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\max }=30.5^{\circ}, \theta_{\min }=1.7^{\circ}$
$h=-22 \rightarrow 22$
$k=-25 \rightarrow 25$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.118$
$S=1.07$

3137 reflections
130 parameters
1 restraint

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0513 P)^{2}+4.1415 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.72 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.77$ e \AA^{-3}

Special details

Experimental. A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes and the e.s.d. for hydrogen-pi acceptor interactions) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Esds for the hydro-gen-pi acceptor interactions are taken as the e.s.d.'s on the hydrogen donor to mean plane of the pi-acceptor distances.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.14415(2)$	$0.595132(18)$	$0.26943(4)$	$0.03453(12)$
N1	$-0.02798(16)$	$0.68765(12)$	$0.9753(3)$	$0.0256(5)$
H1	$-0.009(2)$	$0.7273(14)$	$1.025(4)$	0.031^{*}
C1	$0.09072(18)$	$0.62304(14)$	$0.4908(4)$	$0.0237(5)$
C2	$0.13506(17)$	$0.66570(15)$	$0.6173(4)$	$0.0250(5)$
H2	0.1920	0.6811	0.5936	0.030^{*}
C3	$0.09542(18)$	$0.68562(15)$	$0.7787(4)$	$0.0248(5)$
H3	0.1258	0.7148	0.8654	0.030^{*}
C4	$0.01153(17)$	$0.66358(14)$	$0.8166(3)$	$0.0220(5)$
C5	$-0.03227(17)$	$0.62058(14)$	$0.6857(3)$	$0.0225(5)$
H5	-0.0893	0.6052	0.7082	0.027^{*}
C6	$0.00745(18)$	$0.60043(14)$	$0.5232(3)$	$0.0228(5)$
H6	-0.0224	0.5714	0.4353	0.027^{*}
C7	$-0.08697(16)$	$0.64678(14)$	$1.0792(3)$	$0.0220(5)$
C8	$-0.09352(17)$	$0.56827(14)$	$1.0688(4)$	$0.0233(5)$
H8	-0.0593	0.5412	0.9846	0.028^{*}
C9	$-0.14950(19)$	$0.52990(17)$	$1.1805(4)$	$0.0294(6)$
H9	-0.1534	0.4766	1.1721	0.035^{*}
C10	$-0.2008(2)$	$0.5685(2)$	$1.3063(4)$	$0.0343(6)$
H10	-0.2389	0.5419	1.3835	0.041^{*}
C11	$-0.19422(19)$	$0.6463(2)$	$1.3148(4)$	$0.0338(6)$
H11	-0.2284	0.6733	1.3993	0.041^{*}
C12	$-0.13888(18)$	$0.68566(16)$	$1.2028(4)$	$0.0271(5)$

H12
-0.1361
0.7390
1.2098
0.033*

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.03463(18)$	$0.03743(18)$	$0.03153(17)$	$0.00533(12)$	$0.00963(12)$	$-0.00285(11)$
N1	$0.0360(12)$	$0.0194(9)$	$0.0213(10)$	$-0.0046(9)$	$0.0032(9)$	$-0.0044(8)$
C1	$0.0275(12)$	$0.0196(11)$	$0.0241(12)$	$0.0050(9)$	$0.0014(10)$	$0.0036(9)$
C2	$0.0217(12)$	$0.0233(11)$	$0.0301(13)$	$-0.0011(9)$	$-0.0001(10)$	$0.0059(10)$
C3	$0.0286(12)$	$0.0211(11)$	$0.0246(12)$	$-0.0041(9)$	$-0.0039(10)$	$0.0020(9)$
C4	$0.0299(13)$	$0.0175(10)$	$0.0187(11)$	$-0.0007(9)$	$-0.0005(9)$	$0.0014(8)$
C5	$0.0238(12)$	$0.0238(11)$	$0.0200(11)$	$-0.0010(9)$	$-0.0011(9)$	$-0.0012(9)$
C6	$0.0283(12)$	$0.0203(11)$	$0.0198(11)$	$0.0000(9)$	$-0.0017(9)$	$-0.0003(9)$
C7	$0.0233(12)$	$0.0232(11)$	$0.0194(11)$	$0.0023(9)$	$-0.0033(9)$	$-0.0004(9)$
C8	$0.0255(12)$	$0.0219(11)$	$0.0225(11)$	$0.0024(9)$	$-0.0021(9)$	$-0.0016(9)$
C9	$0.0315(14)$	$0.0302(13)$	$0.0266(13)$	$-0.0056(11)$	$-0.0024(11)$	$0.0023(10)$
C10	$0.0287(14)$	$0.0461(17)$	$0.0280(14)$	$-0.0090(13)$	$0.0008(11)$	$-0.0012(12)$
C11	$0.0255(13)$	$0.0497(18)$	$0.0263(13)$	$0.0019(12)$	$0.0033(11)$	$-0.0095(12)$
C12	$0.0275(13)$	$0.0283(13)$	$0.0257(12)$	$0.0046(10)$	$-0.0027(10)$	$-0.0053(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	$1.898(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.389(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.402(3)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.849(18)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.386(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.387(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.387(4)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.400(4)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.408(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.395(4)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 7$	$126.4(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1$	$117(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1$	$115(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$121.0(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{Br} 1$	$119.2(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$119.9(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.3(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.4(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.3
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 3$	$120.0(2)$

$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{C} 7-\mathrm{C} 8$	$1.400(4)$
$\mathrm{C} 7-\mathrm{C} 12$	$1.402(4)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.382(4)$
$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{C} 9-\mathrm{C} 10$	$1.404(4)$
$\mathrm{C} 9-\mathrm{H} 9$	0.9500
$\mathrm{C} 10-\mathrm{C} 11$	$1.388(5)$
$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 11-\mathrm{C} 12$	$1.385(4)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1$	$122.3(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$118.9(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$	$118.8(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$120.3(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	119.8
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.8
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$121.0(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	119.5
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	119.5
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$118.2(3)$
C11-C10-H10	120.9
C9-C10-H10	120.9

sup-4

supplementary materials

$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$121.6(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.2(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.5(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.6(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.3(4)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.87(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.0(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$-145.7(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$38.0(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$-176.7(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(4)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$176.6(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.3(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.3(4)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.89(19)$

$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$121.4(3)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	119.3
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	119.3
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$120.1(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.0
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{H} 12$	120.0
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.0(4)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$20.8(4)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$	$-161.7(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$176.6(3)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.8(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.0(4)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$0.4(4)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.1(4)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$-1.0(4)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$1.3(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$-176.2(3)$

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

Cg 1 and Cg 2 are the centroids of the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cg}^{2}$	0.95	2.69	$3.404(3)$	132
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cg}^{\mathrm{i}}$	$0.85(2)$	2.65	$3.501(2)$	175
$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{Cg1}^{\mathrm{iii}}$	0.95	2.96	$3.651(3)$	131

Symmetry codes: (i) $x, y, z-1$; (ii) $x-1 / 2, y+3 / 2,-z$; (iii) $-x+1 / 2,-y+3 / 2, z+2$.
supplementary materials

Fig. 1

Fig. 2

